Esterification and Deacidification of a Waste Cooking Oil (TAN 68.81 mg KOH/g) for Biodiesel Production
نویسندگان
چکیده
Oils with high content of free fatty acid (FFA) can be treated by acid esterification where an alcohol reacts with the given oil in the presence of acid catalyst. The investigated parameters include methanol to oil ratio, temperature and amount of catalyst. The optimum conditions for acid esterification which could reduce FFA content in the feedstock to less than 1.88% (acid value 3.76 mg KOH/g waste cooking oil) were 50 °C, 20% methanol to oil ratio (by volume) and 0.4 vol.% H2SO4 after 5 h. However, oil with an acid value of more than 1 mg KOH/g oil cannot meet the alkaline catalyzed transesterification conditions. Under the conditions of NaOH concentration 0.5 N, excess alkali 15%, 60 °C, 40 min, the FFA removal rate for deacidification reached 77.11% (acid value 0.86 mg KOH/g esterified oil). The acid value of deacidification product was reduced below 0.86 mg KOH/g esterified oil, thus meeting the base-catalyzed trans-esterification conditions.
منابع مشابه
A Two-step Catalytic Production of Biodiesel from Waste Cooking Oil
Waste cooking oil (WCO) was used as a potential feedstock for biodiesel production. High levels of free fatty acids (9.85% w/w) in WCO made it an undesirable substrate for direct transesterification reaction. To solve this issue, a two-step process was implemented in this research. Firstly, esterification reaction was performed in presence of sulfuric acid as a common acid catalyst to reduce th...
متن کاملEsterification of Waste Cooking Oil Followed by Transesterification by CaO Nanoparticles: Application of Taguchi Methodology
In order to produce biodiesel from waste cooking oil and optimize its yield, a two-stage process of esterification/ transesterification has been used in this study. First, we used the acidic catalysts H2SO4 in order to diminish the content of free fatty acid (FFA) in oil that caused reducing the oil acidity from 6.1% to 0.57% through esterification. Then, the biodiesel was produced by transeste...
متن کاملBiodiesel Production of Capparis Spinosa Oil via Trans-Esterification Reaction by Using NaOH Catalyst and Its Pilot Synthesis Design
Energy obtained from renewable sources has increased its participation in the energy matrix worldwide, and it is expected to maintain this tendency. Both in large and small scales, there have been numerous developments and research with the aim of generating fuels and energy using different raw materials such as alternative crops, algae and waste cooking oil. Capparis spinosa seed (containing 3...
متن کاملDeacidification of Pistacia chinensis Oil as a Promising Non-Edible Feedstock for Biodiesel Production in China
Pistacia chinensis seed oil is proposed as a promising non-edible feedstock for biodiesel production. Different extraction methods were tested and compared to obtain crude oil from the seed of Pistacia chinensis, along with various deacidification measures of refined oil. The biodiesel was produced through catalysis of sodium hydroxide (NaOH) and potassium hydroxide (KOH). The results showed th...
متن کاملBiodiesel Production from Waste Cooking Oil Using Sulfuric Acid and Microwave Irradiation Processes
A comparative study of biodiesel production from waste cooking oil using sulfuric acid (Two-step) and microwaveassisted transesterification (One-step) was carried out. A two-step transesterification process was used to produce biodiesel (alkyl ester) from high free fatty acid (FFA) waste cooking oil. Microwave-assisted catalytic transesterification using BaO and KOH was evaluated for the effica...
متن کامل